光谱仪_直读光谱仪_X射线成像系统_残余应力仪                                                                                     咨询热线18700442184

西安丰登光电科技有限公司

网站首页 > 新闻资讯 > 行业动态

激光诱导击穿光谱技术发展趋势和未来

2017-05-17 16:22:08 西安丰登光电科技有限公司 阅读

LIBS是一种激光烧蚀光谱分析技术,激光聚焦在测试位点,当激光脉冲的能量密度大于击穿阈值时,即可产生等离子体。基于这种特殊的等离子体剥蚀技术,通常在原子发射光谱技术中分别独立的取样、原子化、激发三个步骤均可由脉冲激光激发源一次实现。等离子体能量衰退过程中产生连续的轫致辐射以及内部元素的离子发射线,通过光纤光谱仪采集光谱发射信号,分析谱图中元素对应的特征峰强度即可以用于样品的定性以及定量分析。

手持式LIBS光谱仪

  自从1960年第一台红宝石激光器的发明为原子光谱分析注入新鲜血液之后,类似于火花源的激光光束聚焦击穿现象即见诸文献报道。1962年 Jarrell-Ash的Brech发表第一篇关于用激光产生等离子体进行分析的文章,标志着激光烧蚀分析技术的诞生。1964年,得益于激光器Q开关脉冲技术,使得激光烧蚀无需通过辅助电极放电,直接通过激光产生等离子体进行分析,这也是今天LIBS的雏形。至20世纪80年代,美国Los Alamos实验室利用激光等离子体的光谱信息实现了对于物质元素信息的测量,从而将该技术正式命名为LIBS (Laser Induced Breakdown Spectroscopy)。本世纪分析领域的一大新闻就是美国NASA采用LIBS技术作为火星车表面矿物分析手段——ChemCam,并出色地完成了科考任务。因而,LIBS技术的应用也相应地成为了一大研究热门。与其他常用元素分析的方法相比,其主要优点有:

  (1) 利用激光特有的性能,可实现远程、实时、在线元素检测。

  (2) 仪器体积相对较小,适用于现场分析、可在恶劣条件下进行测定。

  (3) 可用于各种形态的固体、液体甚至气体分析,而且无需繁琐的样品前处理过程,分析简便、快速。

  (4) 可测定难溶解的高硬度材料,对样品尺寸要求不严格,且对样品的破坏性小,实现微损甚至近于无损检测,样品消耗量极低(约0.1μg-0.1mg)。

  (5) 分析时间短,从激光脉冲发射到信号收集的整个过程仅仅需要毫秒级别的时间。

  (6) 可进行多元素同时检测。

  远距离辐射光接收技术及光纤传感技术的迅速发展使得激光技术对高温、恶劣环境下的非接触分析得以实现,对环境的较好适应性使其成为优秀的原位监测手段,赋予其优异的实用性。凭借着以上优势,LIBS技术在光谱分析领域的舞台上崭露头角。在过去的三十多年中,国际研究者对LIBS的理论基础进行了大量的研究工作。主要集中于高速相机拍摄LIBS等离子体形貌、不同物质时间分辨谱图、LIBS等离子体温度及电子数密度的估算、激光与物质相互作用机理的研究等。

  基于LIBS技术的痕量分析和在线检测的仪器设备已经开始进入市场。国外已出现较为成熟的商品化仪器,但是,昂贵的销售价格限制了其使用对象,核心技术的垄断以及可能涉及到的重要战略作用,成了束缚国内研究及应用领域的一根铁链。国内LIBS技术相对起步较晚,目前虽有一些高校及科研单位从事LIBS技术的研究,但大部分仍偏向于理论及方法的探索,研究目的多为对基础理论的探讨与改进。作为高新技术产业,国内没有相应的自主研发及集成的技术企业,相关产品均来自国外。但目前国内市场中的LIBS进口仪器并没有形成垄断地位或者一家独大的状况,行业处于多家企业共存,百家争鸣的状态,具有代表性的主要有IVEA、Applied Phonics、Applied Spectra、TSI、牛津等公司。作为一种新兴技术,上述公司的不同型号产品也都是在近几年刚刚进入中国市场。

  从目前LIBS发展现状来看,主要有以下几大方向:

  趋势一:便携化

  近年来,随着对工业节能减排的要求,以及环境污染事件频发、食品安全等一系列问题、快速检测仪器得到了极大的重视。对于军事国防业及突发事件对快速响应的需求,环境监测与地质对在线监测的需求,历史文化遗产对于不可移动物质判别的需求,LIBS技术以其无样品预处理,多形态分析以及无辐射危害的优势成为现场检测技术最新发展的热点,而便携化无疑是这一技术的一大发展趋势。这类仪器不但要考虑仪器的集成度和稳定性等基本指标,还需要考虑能耗、抗振动、工作环境等问题。

  无论是SCIAPS的手持LIBS还是TSI的车载小型LIBS仪器,都是在现有仪器基础上形成的小型化仪器,此外,牛津的手持仪器已经可以实现电池操控,五秒内对钢铁样品实现分类定性,这是商业化LIBS的一大进步,值得所有面向应用的科研团队学习。而对于国内的LIBS技术来说,依然多是基于实验室的研究仪器,需要复杂的参数调节与严格的检测环境。在此背景下,我们分析仪器研究中心团队首次实现了便携式激光诱导击穿光谱分析仪器的国产化。便携式激光光谱分析仪(LIBS Mobile)以及体积更小、质量更轻,更适用于野外现场样品快速分析的手持式LIBS仪器:手持式激光光谱分析仪(LIBS Mini),均能在数秒之内在原地完成对固体、液体甚至气体形态的物质的完整在线元素分析,因此该类便携式仪器可用于地质、环境、安保、古董、冶金、表面处理及电子器件现场分析。

  趋势二:专用化

  在实际应用中,要摒弃“一机多用”的面面兼顾思维模式,不仅浪费资源,也往往使仪器不能达到最优的使用效果。对于不同的使用需求,要开发各种有针对性的实用仪器。专用仪器的使用成本和检测精度都会得到有效的改善。针对特定的检测对象和检测指标,关键还要有大量的、稳定可靠的校正模型以及模型的维护和二次开发能力。以牛津mPulseTM为例,其抓住钢铁分类为应用点,采用聚类分析的手段,虽然限制了LIBS技术的应用范围,但是同时也降低了仪器成本,提高了测定速度与准确率。只有跟用户单位的有效沟通和通力协作才能够实现LIBS技术的真正专用,比如我们分析仪器研究中心的LIBS仪器,就是在基于成熟的便携LIBS系统的基础上,根据来自地质研究院以及钢铁集团的实际需求,对仪器的硬件参数与软件操作进行改进与升级。同时,建立了LIBS技术用于岩性识别的方法体系,并借助于化学计量学手段开展基体校正研究,探索了地层样品的LIBS元素定量-半定量分析的模型部分。

  趋势三:核心零部件研制和创新

  国家对于国产科学仪器的发展给予了高度的关注和资金支持,而核心零部件性能对于仪器整体性能的提升至关重要。光栅是光谱仪器的核心部件,光栅刻划集精密机械、光学技术于一身。但目前我国光栅、检测器、扫描装置等部件多依赖于进口。因而,积极采用以及自主研发国产部件对于最终成型仪器的商品化上市以及产品的竞争力具有极大的推动作用。优质光电倍增管检测器;光谱分析用多维固体检测器—线阵、面阵式CCD检测器;高刻线密度、高光通量全息光栅;中阶梯闪耀光栅;高强度短弧氙灯-连续光源等,这些国内或较少有自主产品,或相应的质量和性能不及国外产品。最重要的是,仪器成本往往取决于相关部件的成本,若我们仅仅靠装配组装技术,永远无法掌握真正的核心技术,也难于形成有国际竞争力的产品。反过来,LIBS技术的大力发展,不仅对于技术本身有积极意义,对于零部件国产化的进程也具有极大的促进作用。许多业内人士都曾呼吁大家关注仪器核心零部件的研制。在这一点上,我们的LIBS研发团队对此也深有体会。

  趋势四:分析方法的创新

  只有单纯的谱图,是远远无法满足工业分析需求的。而简单的线性拟合方法,又会受到基质效应等因素的影响。对于分类方法来说,固定不变的参数同样会因为外界基质的变动而在实际应用中产生较大误差。大多数LIBS分析软件依赖于光谱仪的操控,仅仅是获得元素的谱图,而后续再采用第三方软件进行处理;亦或是通过最小化参数的改变来实现定性测定的要求。可以说,没有合适分析方法的LIBS仪器仅仅是硬件的堆积。只有加入分析方法学,统计算法学等,才能够实现LIBS技术的有效应用。这一点也是国外现有LIBS技术的一个共性问题,其操作或过于繁复,或过于简单,用户需要自己考量的部分太多。因此,我们的研发团队在对于分析参数的变动与软件的简化,实现原位物质瞬时定性与快速定量等方面,结合光谱特征谱线识别与标定方法,在整体上完成了自动化实验平台的研发与设计,为整个LIBS实验过程的自动化控制打下了坚实的基础。

  趋势五:技术联用

  近年来,由于激光光谱仪器部件的趋同性,技术发展的一大趋势是将之与其他检测技术联用,例如将LIBS多元素检测能力和拉曼技术或荧光技术在分子层面的检测能力相结合,得到更为全面的物质成分信息。我们提出开发兼具原子光谱和分子Raman光谱的LIBRAS(Laser Induced Breakdown Raman Spectroscopy)系统,实现激光光谱仪对样品中元素和物质种类的鉴别和量化,这是分析技术的一次重点跨越,在推进分析测试技术方面将具有革命性的意义。另外,通过与传统富集方法的结合或者是创新的信号增强技术也是目前LIBS 技术研究工作中的一个重要方向。随着网络技术的发展,分析仪器与移动网络和云技术的联用可以对于远距离测试,异地操控等实际应用有极大价值,其潜力亦不可忽视。

  趋势六:遥测

  目前纳米脉冲激光器的使用已经可以进行长达百米左右距离的固体目标遥测。通过使用有效的聚焦透镜对激光束远程高度聚焦,已经实现了远距离的等离子体激发和收集。随着LIBS仪器的日趋成熟,今后可能将其安装在遥控操作式载体上,完成对空气、地面甚至水下检测任务。以火星探测为例,在航天应用时,不可能将探头固定于某一位点,应用LIBS技术,在非接触的远距离条件下即可获得岩石的测定结果,因而LIBS技术继火星车ChemCam之后又一次被选为金星探测用仪器。

  趋势七:提高可靠性

  可靠性是分析仪器的灵魂和生命线。对于当前的LIBS系统,可靠性仍然是发展中亟待解决的问题之一。此外,在仪器完善过程中,必须采取一系列可靠性设计分析工作,做好可靠性试验与验证工作。当务之急是建立可靠的检测范围和实验方法来巩固和完善其在定量分析中的实用性,尽快制定出完善的检测标准,得到行业的认可,从而以最快速度扩大LIBS技术的应用范围。为此,我们的研发团队在前期激光等离子体空间分辨性质研究的基础上,对仪器的光学收集系统进行了创造性地改良,保证了信号收集效率的增强,提高了仪器的灵敏度,并通过光学技术的进步,采用单脉冲双光束激发的LIBS专利技术,能够有效地避开等离子体的遮蔽效应,使最终激光能量受外界环境干扰因素显著地降低。

  综上所述,LIBS技术的发展正呈现出突飞猛进的势头,其研究热点主要集中于更高的灵敏度、更高的准确性、更好的选择性、更高的自动化程度、仪器的小型化和智能化等方面。在国外已经被广泛地应用于环境、国防、航空、冶炼等领域中,并且在很多领域中展现出取代传统的原子光谱技术占据主导地位的势头。对LIBS系统的设计装配,坚固耐用与用户友好型的商业化过程是LIBS未来发展的关键。毫无疑问,LIBS要更加充分地发挥其市场潜力,必将在现在的价格上进行大幅调整,向低成本迈进。同时,必须发展现场便携式系统,建立可靠的检测范围和实验方法来巩固和完善其在定量分析中的实用性。总而言之,LIBS的未来比过去任何时刻都要光明,作为元素分析领域最耀眼的一颗新星,需要我们以国人特有的顽强精神和锐意进取的态度,做大做强,赶超国际领先水平,让世界感受到国际化标准下国产仪器的崭新面貌,在LIBS发展史上留下浓墨重彩的一笔。



标签:   LIBS 激光诱导击穿光谱仪 LIBS发展和未来
Powered by MetInfo 5.3.19 ©2008-2018 www.metinfo.cn